Current Group

Scientific Experimental officer

Dr. Nic Mullin

Email: n.mullin@sheffield.ac.uk

Project: My main interest is developing scanning probe instrumentation for studying soft matter and biology. I am currently working as a researcher on "Next generation AFM for solving problems in biology and medicine" funded by the Wellcome Trust, on which I am co-investigator with Jamie. I also manage the day-to-day running of the BICEN AFM lab. 

Post-Doctoral Research Associates

Dr. Xinyue Chen

Email: xinyue.chen@sheffield.ac.uk

Website: https://orcid.org/0000-0001-6987-5540 

Project: I have been heavily committed to the studies of mechanobiology covering multiple length scales for almost a decade. Currently I'm engaged in the characterisations of the mechanical architectures of both complex tissue (breast cancer metastasis in bone microenvironment) and supramolecular composite (cell wall of S. Aureus) mainly by using atomic force microscopy (AFM). These characterisations are essential for understanding the crucial role of mechanics in biological processes. The instrumental and theoretical developments involved in these studies are helpful in extending the application of high resolution mechanical mapping by AFM to research on length scales that have yet to be accessed.

Abimbola Feyisara Adedeji

E-mail: a.adedeji@sheffield.ac.uk

Website: https://www.linkedin.com/in/abimbola-feyisara-adedeji-36a46437/ 

Project: I am utilising high resolution atomic force microscopy to profile, investigate and quantify the inherent structural motifs and topographical properties associated with peptidoglycan harvested at the exponential phase of different methicillin-resistant Staphylococcus Aureus (MRSA) and the Escherichia coli (E.coli) derivatives. 

Here are some of the research questions that I seek to address; 1) how does resistant changes the cell wall architecture? 2) Can we distinguish the antimicrobial strains based on the material properties of their associated cell wall? And 3) what is the link between these architectural differences and the inherent macroscopic resistant expressed by the aforementioned strains? This will reveals the imprints of resistant on the peptidoglycan architecture and bring-to-light the structure-function correlates associated with the aforementioned strains. This study will yields more understanding as to how antimicrobial resistant impacts on the cell wall architecture and mechanics, leading to promising designs for antibiotics that can circumvent resistant in bacteria.  

Laia Pasquina Lemonche

E-mail: lpasquinalemonche1@sheffield.ac.uk

Website: https://www.linkedin.com/in/laia-pasquina-l/

Project: The battle against Antimicrobial Resistance is currently one of the World Health Organisation priorities. My project adds to this research by exploring one fundamental question: How do antibiotics work? We know some of the most commonly used antibiotics disrupt the Cell Wall of Bacteria (in specific a molecule called Peptidoglycan). However, we do not know enough about the 3D architecture of this macromolecule. 

We are using a combinations between microbiology experiments and imaging using high-resolution AFM to understand the architecture of the cell wall from Gram-positive bacteria such as Staphylococcus aureus and Bacillus subtilis. Once we have developed a new model of 3D architecture of Peptidoglycan for S. aureus and B. subtilis, we have also studied crucial mutants and different strains. Then, by comparing these pool of images from "healthy bacteria" with bacteria treated with b-lactam antibiotics, we could elucidate more knowledge into the process of killing bacteria. I am in the final stage of writing my thesis with a continuation project as a Research Asisstant in Hobbs and Foster labs.

PhD Students

cameron colclough

E-mail: ccolclough1@sheffield.ac.uk

PhD commenced: 2022

Second Supervisor: Prof Andy Fleming and Dr Sam Amsbury (School of Biosciences)

Project: 

hARRISON SWIFT

E-mail: hswift3@sheffield.ac.uk

PhD commenced: 2022

Second Supervisor: Prof Nigel Clarke (Department of Physics and Astronomy

Project: 

Matthew Barker

E-mail: mjbarker@sheffield.ac.uk

PhD commenced: 2023

Second Supervisor: Prof Simon Foster (School of Biosciences) 

Project: 

If you are interested in joining our research group, please find any current positions here or feel free to contact us.